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A formulation analogous to that discussed earlier in [l] is used as the framework for constructing an 

algorithm, based on the finite-element method, for the numerical solution of the problem of determining 

the eigenvalues and mode of rotating, dynamically symmetrical bodies. It is proposed to seek the eigen 

modes of the nonconservative problem in the form of an expansion in eigen modes of the conservative 

problem, which reduces the dimensions of the matrices and enables the complex problem of the eigenvalues 

to be solved with the help of well-known and tested methods. 

THE CHARACTERISTIC features of the rigidity of rotating structures can change under the action of 
centrifugal force. If the terminology adopted in [l] is used, then, when the angular velocity is 
constant, one is dealing with a system in which the number of rotations can be controlled and this 
represents a typical nonconservative system. This means that in order to obtain complete 
information about the “dynamic record of the system” one must consider, in addition to the 
problem of the eigen frequencies and modes of the oscillations of elastic rotating bodies, also the 
problem of nonconservative elastic stability. 

In many cases, and especially when solving examples, one inspects the stability using the 
first-approximation equations, and the effect of the initial stress state on the eigen modes and 
frequencies of the oscillations is found from the solution of the linearized equations of motion [2]. 
The determination of eigenvalues is the common feature of such approaches. The final conclusions 
concerning the stability can be based on the form of the eigenvalues obtained, for example, using 
the framework of the Lyapunov theorems on stability in the first approximation, or by showing that 
these eigenvalues correspond to the oscillation eigenfrequencies. 

This paper deals with the problem of the eigenvalues and eigen modes of the motion of a 
nonconservative system. Depending on the geometry of the structure, material properties, 
boundary conditions and other parameters defining the system, the eigenvalues will be imaginary, 
real, or complex. 

The usual methods of computing the eigenfrequencies and modes of the oscillations applicable to 
conservative systems, for example [3], cannot be used for the systems discussed here [4]. It is 
therefore necessary to stipulate the possible changes in existing approaches and alorithms which 
have shown themselves to be successful in solving the conservative problems, and supplement them 
by a number of new elements. For example, the procedure of the reverse iteration method [2] and 
the method of parabolas in complex form [5] will after combining them with the semi-analytic 
method of finite elements [6], satisfy the needs of the problems considered. 
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1. FORMULATION OF THE PROBLEM 

An elastic body occupies, in three-dimensional Euclidean space, a volume V bounded by the 
surface 2. Boundary conditions are specified on part of the surface 6, in displacements, and on the 
remaining part of the surface 2, in the stresses. The body rotates with angular velocity w of constant 
magnitude, about an axis which coincides with the axis of symmetry of the body. The relative 
Coriolis and centripetal accelerations related to elastic deformations of the body are taken into 
account. The influence of stationary internal stresses due to the action of centripetal forces are not 
discussed. The dynamic characteristics of the system, the eigenvalues and eigen modes of the 
motion appearing near the stationary position are all to be determined. In other words, it is 
necessary to determine the functional dependence of the perturbations on time. 

The mathematical formulation of the problem includes the equations of motion [7,8] 

(J. + ,u) grad div u + i_cAu = p lu” + 

+ 20 x U’ + w x (0 x u)l, r, 2, cp E Tr (1.1) 

where u is the displacement vector in a rotating cylindrical system of coordinates r, z, cp whose z axis 
is directed along the vector W, u is the stress tensor in the cylindrical system of coordinates, p is the 
density of the materiaf of the body, the boundary conditions in displacements on the part of the 
surface Z;, and in stresses on the part of the surface Z:, = rC, + C, , v is the vector of outward normal 
to the surface Z) 

u (r. z, 9, Q = 0, r, 2, rp E 2, v-o(u) = 0, r,z, rpE 2, (1.2) 

In the case of an isotropic linear material the stress and strain tensor components are connected 
by the following physical relations: 

(r = h@E + 21”& 1 (1.3) 

Here h, k are the Lam6 constants, 0 is the first invariant of the strain tensor and E is the unit 
tensor of second rank. The following Cauchy relations hold for the strain tensor and displacement 
vector components: 

8 = ‘i, @up -f- -i-u] (1.4) 

The unknown displacement vector can be represented, in the case in question, in the form 

u (r, z, cp, t) = U (r, 2, rpj epf (1.5) 

where p is the complex eigenvalue, to be regarded as eigenfrequency of oscillations or the stability 
parameter. 

After substituting expression (1.5) into Eqs (1.1) and its boundary conditions (1.2), we obtain the 
following boundary value problem for determining the vector U which represents a mode of the 
oscillations ifp is an imaginary number, or a mode of loss of stability if the real part of the complex 
number p or the real p is greater than zero: 

(h + p) grad div U + @U = p [p2U -t 2pw X U f o X (W X U)l, 

r, 2, ~62 V; U ( r, 2, 9) = 0, r, 2, 'p E & (W 

va{hOE + p [(VU)T + (VU)]} = 0, r, 2, cp E 2, 

When using numerical methods to determine the displacement vector, it is more convenient to 
use the variational formulation 
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6A, + 6Ai + 6A, + 6Ak = 0 

6A,=-~o&du, 6Ai=-ppp+J.6Udu 

6d,=--pS[ox(oxU)].6Udu 

6Ak = -2ppl (a x U).GUdv 
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(I-7) 

Here 6A, is the work done by internal stresses determined by the possible displacements, 6Ai is 
the work done by inertial forces, 6A, is the work done by centripetal forces connected with the 
displacement field U, 6Ak is a term determined by Coriolis forces and integration is carried out over 
the volume V. 

The unknown displacement vector U and its variation 6U must satisfy the boundary conditions in 
the displacements, while the conditions in the stresses are satisfied automatically. 

2. NUMERICAL SOLUTION 

The geometrical symmetry of the bodies under discussion about the axis of rotation, enables us to 
write the unknown vector U (r, z, cp) in the form of an expansion in the circumferential coordinate ‘p 

71 2 ~,,~(r, z)cos nrp + ~,,~(r, 2) sin ;rcp 

U = w = ~~,,~(r,.z)cos nq + ~,,~(r, 2) sinncp (2.1) 

l? 12 u,,'(r, 2) sin ?zcp + u,,~ (r, z)cos nrp 

Here u, w, v are the components of the vector U in coordinates r, z, cp, respectively, the 
superscript s corresponds to the symmetric component and a to the antisymmetric component of the 
vector relative to the radius cp = 0, and summation is carried out from n = 1 to n = N. 

We can write the displacement vector in symbolic form as follows: 

u = u, + u, (2.2) 

If we disregard the terms 6A, and 6Ak in the variational equation, the terms related to the 
(‘p = 0), the problem of determining U will separate into two independent problems for U, and U, , 
and the eigenvalues ps and pn corresponding to the eigenvectors, will be identical. In the case of a 
nonconservative system the forms U, and U, are interrelated and can be obtained from the general 
equation (1.7), and the vector U will represent their superposition. We will adopt, for the variation 
MJ, an expansion analogous to (2.1). Evaluating the integrals in (1.7), taking the representation U 
and NJ into account in the form (2.1) as well as the orthogonality properties of trigonometric 
functions, we obtain a variational problem for the separate harmonics 12 in expansion (2.1). 

We construct the vectors Us and U, numerically using the finite-element method. We will give the 
basic relations of the semi-analytic finite element method retaining the notation adopted in [6]. 

We divide the cross-section of the solid of revolution into triangular elements, containing at each 
node six displacement components with a linear approximation of the latter within the element, 
three displacements corresponding to the symmetric displacement vector, and three corresponding 
to the antisymmetric vector. Thus every element will contain 18 nodal displacements. In matrix 
form we have 

ue = N”@ (2.3) 
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where U’ is the displacement vector in the element, N’ is the matrix of the modal functions of 
dimension 3 x 18 and 6” is the column vector of nodal displacements. We can write analogous matrix 
relations for the physical equations and Cauchy relations: 

cre = Dae, Ed= B6’ (2.4) 

where the matrix B’ is determined taking (2.3) into account and D is the matrix of elastic constants. 
Taking into account the notation given above, we shall write the finite-element analogue of the 

variational equation (1.7) in the form 

(K + pp2M + po2F, + 2oppFti) 6 = 0 

K =SB~DB~, ~+rNdu (2.5) 

F, = SNTf,du, F, =SNTfl,dr, 

where K, M, F,, Fk are the matrices of rigidity, mass, the centripetal and Coriolis forces, 
respectively. The matrix f, is given in terms of the modal functions of the element and is symmetric, 
while the matric fk is antisymmetric. Making the change of variables 

to = tQ-‘, avat = i-w/at2 (2.6) 
and putting f2 = o, we can rewrite the Eq. (2.5) in the form 

(K” _I- po2Mo + poFko) 6 = 0 (2.7) 

where the matrices with zero superscript differ from the corresponding matrices from (2.5) in the 
multipliers and p = p&. Such a change of the variable t and choice of R leads to normalization of 
the numerical value of the elements of the matrices K, M, F,, Fk and to their equivalent 
contribution towards the resulting coefficients of system (2.7). 

The complex eigenvalues p. appearing in the system of linear algebraic equations as the unknown 
parameters, are determined using the method of parabolas [5] in complex form. We shall call such a 
scheme for solving the problem in question the direct method of determining eigenvalues. Its 
drawbacks include the high order of the system of equations (2.7) and the low efficiency of the 
method of parabolas in complex form for matrices of large dimensions. 

In order to reduce the dimensions of the system, we shall use the method of expansion in eigen 
modes of the corresponding problem for a conservative system. The latter problem is real and 
therefore much simpler than the complex problem (2.7). 

The expansion contains linear combinations of a finite number of first eigen modes of the 
oscillations of the corresponding elastic problem without rotation [9] 

J,, 

6 = ff QkXh., q1( = co11st (2.8) 

where Xk is the eigenfrequency of the oscillations of the conservative system, and Xk is the eigen 
mode of the oscillations corresponding to &. When (2.8) is taken into account, system (2.7) will 
become 

(K - pL,;‘M) xl; p= 0 (2.9) 

where hk is the eigenfrequency of the oscillations of the conservative system, and Xk iS the eigen 
mode of the oscillations corresponding to A k. When (2.8) is taken into account, system (2.7) will 
become 

(K’ + po2JI’ + P$L’) q = 0 (2.10) 
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The matrices in (2.10) have dimensions 2m x 2m, and their elements are given by the relations 

K,,’ = x~TK”x~, A&/ = xiTMoxi (2.11) 

F;kjij = XiTFkoXj, i, j = 1, 2, . . ., m 

The dimensions of the matrices are twice the number of terms retained in the expansion, due to 
the need to take into account the symmetric and antisymmetric components in the vectors Q. 

The method of expansion in terms of the eigen modes is convenient in the case when the 
properties of the structural material and the angular velocity parameter vary, in which case the 
modes of the oscillations determined earlier can be used time and again to investigate the stability. 
It is however difficult to obtain in advance the necessary number of eigen modes in the expansion 
(2.8). Computations carried out show that this drawback can be compensated by a substantial 
increase in the efficiency of the method of determining the eigenvalues, and by carrying out the 
numerical experiment with a different number of modes retained in the expansion one can 
guarantee the correctness of the results obtained. 

3. EXAMPLES OF COMPUTATIONS 

Numerical computations were carried out for an elastic body in the form of a disc of following geometrical 
dimensions: inner radius 0.02 m, outer radius 0.125 m, thickness 0.01 m, rigidly clamped along the inner 
contour, with a Poisson’s ratio of 0.26. The outer contour of the disc is load free. In order to establish the 
usefulness of the proposed algorithms, the problem was solved using the direct method and method of 
expansion in eigen modes of the conservative problem. Moreover, the results obtained constructing the eigen 
modes of the oscillations of the conservative problem make it possible to determine the necessary number of 
terms in expansion (2.8). 

We shall illustrate this using a specific example. The values of the first seven eigenfrequencies of the 
oscillation of the disc (in Hertz) without rotation for E = 2 X 101’ N/m* and p = 7830 kg/m3 were as follows: 74, 
564, 1614,3173,5245,5944,7824. All results quoted in the paper refer to the first harmonic in the expansion in 
the angular coordinate. Flexural modes of oscillations correspond to the first five eigenfrequencies, the sixth 
frequency has the mode of oscillations in the plane, the seventh is again flexural, etc. (alternation of the flexural 
and plane forms of the oscillations). Their sequential order may change for different geometrical dimensions 
and boundary conditions. 

The additional forces of inertia caused by rotation have a different effect on the change in the eigenvalues 
quantitatively, as well as qualitatively. The eigenvalues to which the Aexural modes of the oscillations 
correspond may decrease as the angular velocity increases and remain purely imaginary (Fig. 1, pl) until one of 
them vanishes. When o is increased further the quantity pi, for example, will become real and positive, and 
such eigenvalues will vary quite slowly. According to investigations [l, lo] such an instability is called a static 
instability. In order to show how the eigenvalues of the corresponding conservative problems change when 
rotation is taken into account, we will give the values of the eigenfrequencies at E = 2 X lOi N/m2 and p = 7830 
kg/m3 for an angular velocity of w = 5000 rpm: 56.4,56.9,547.2,547.6, 1601.2,1600.8,3160.9,3161.4,5232.9, 
5233.4, (1274.0 + 3547.81’), (1274.0 - 35471’), 7813.0. The sixth eigenvalue corresponding to a plane mode of the 
oscillations corresponds to the change in the angular velocity in a completely different manner than the flexural 
frequencies mentioned above. 

We note that in the case when w = 0 we have multiple eigenfrequencies which correspond to the symmetric 
and antisymmetric modes of motions. When an angular velocity appears, they begin to change quantitatively 
according to a very complicated rule, but remaining purely imaginary (Fig. 1). Beginning from some value of 
the parameter o, they converge and form a pair of complex eigenvalues with a positive real part. This effect was 
described in [ 11 as an oscillatory instability. 
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FIG. 1. 

The results were obtained using the direct method and the method of expansions in eigen modes. 
Comparisons have shown that the eigenvalues are practically identical in both cases when the expansion 
contains 16 eigen modes of the oscillations. 

Table 1 gives normalized coefficients gk in expansion (2.8), the superscripts s and a are as before, and the 
numbers 1,2, . . . , 16 correspond to the order of the frequency sequence in the spectrum. The flexural modes 
have the numbers 1,2, 3,4,5, 7, 8, 10, 11, and the plane modes have the numbers 6, 9, 13, 16. Analysis of the 
table enables us to form the sequence of the functions Xk and enables us to use them further in the expansion. 

TABLE 1. 

Mode 

qka 

pi = 56.4 

1.o+oi 
1.001+ oi 
-o.o008+oi 

0 

0 

i 

p2 = 56.9 

0 

l.O+Oi 
0.01 + Oi 
-O.O08+Oi 

0 

Frequency 

p3 = 547.2 

-0.01 SOi 
l.O+Oi 
-0.005 + Oi 
0.0~~ + Oi 

0 

0 

f 

p4 = 547.6 

0 

-0.01 + Oi 
l.O+Oi 
-0.005 + Oi 
0.008 + Oi 

0 

pub = 5233.4 

0 

0 
0.0004 + Oi 
-0.0004 i- Oi 
0.001 + Oi 
l.O+Oi 
0.001 + Oi 
0.002 + Oi 

0 

pr,,i2 = 1274f35473 

0, k = 1, 2, , . . ,5 
l.O+Oi, k = 6 
O,k= 7,8 
0.294 - 0.226i, k = 9 
0, k = 10, 11, 12 
0.027 - O.O21i, k = 13 
0, k = 14,15 
-0.002 + O.O03i, k = 6 

0, k = 1, 2, . ,5 
0+ l.Oi, k = 6 
0, k = 7, 8 
-0.226 + 0.2941’, k = 9 
0, k = 10, 11, 12 
-0.021+ O.O27i, k = 13 
0, k = 14,15 
0.003 - O.O02i, k = 16 

Figure 1 (E = 2 x 10” N/m2, p = 7830 kg/m3) and similar to it Fig. 2 (E = 10” N/m’, p = 7830 kg/m3) and 
Fig. 3 (E = 2 x 10” N/m’, p = 4540 kg/m3) show the graphs of the change of the first and sixth eigenvafue as a 
function of the angular velocity parameter. The thick lines depict the imaginary part of the complex 
eigenvalues, and the dashed lines correspond to the real part. 

When formulating the problem, we remarked that the eigen oscillation frequencies are affected by the initial 
state of stress. In the case of a conservative problem this effect was studied in 123. Since in the present paper the 
analysis is carried out without taking this fact into account, we constructed, as a tentative estimate, graphs of 
the changes in the characteristics of the eigenvalues (Figs 2 and 3) for discs with different material 
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FIG. 4. 

characteristics, which models to some degree the change in rigidity caused by the initial state of stress. 
Comparing Figs l-3 we can conclude that inclusion of the initial state of stress in our discussion does not change 
the qualitative pattern of the appearance of instability; it merely shifts the domain of instability towards an 
increase or decrease in the critical angular velocity. 

The proposed approach was used to study the stability of an airplane deflector (Fig. 4). The quantitative 
results are identical with those given in Figs 1-3. The first zones of instability for a structure with type A 

boundary conditions were established within the range 500 rpm<w* ~800 rpm, and for type B conditions 
within the range 4200 rpm < o* < 5500 rpm. 

A complete study of the dynamic behaviour of structures requires that the above analysis be carried out for 
several harmonics in the expansion in the angular coordinate. 

1. 
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STABILIZATION OF HOLONOMIC CONTROLLED SYSTEMS 
NEAR A POSITION OF EQUILIBRIUM-t 

B. N. SOKOLOV 

(Received 28 October 1990) 

THIS PAPER is a continuation of the study of various laws of positional control of large dynamic systems [l-3], 
and deals with a holonomic controlled system near its position of equilibrium. The necessary and sufficient 
conditions for the existence of a control ensuring asymptotic stability of the system as a whole are obtained. A 
structure of the control, which is the simplest in a certain sense, which solves the problem in question, is given. 

Let M, C, P, G be the matrices of mass, dissipative forces, potential energy and control, respectively, q the 
vector of generalized coordinates, and u the control. C and P are non-negative definite matrices, and M is a 
positive definite matrix. The motion of a holonomic system near the position of equilibrium is described by the 
equations [4] 

Mq” + Cq’ + Pq = Gu, q E Rn, u E Rm (1) 

Linear controlled systems of general type were studied in sufficient detail in [4, 51, and corresponding 
methods for obtaining a control for solving two-point boundary value problem were developed. If the system is 
of large dimensions the construction of positional control taking the system to a prescribed position is difficult. 
Therefore, regulators are often used which ensure the asymptotic stability of the dynamic system in the 
required position [5]. Suppose the system in question is of large dimensions, and it is required to construct a 
regulator which depends on the minimum number of generalized coordinates. Below we obtain the necessary 
and sufficient conditions determining the control matrix of such a regulator and the corresponding control is 
given. 

We shall call the subspace L on which the non-negative definite form vanishes, the null subspace. We will 
denote by Li and L2 the null subspaces of quadratic forms qTCq and qTPq (1) respectively. 
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